
 

 

  
Abstract—A comparative study of two approaches for 

simplification and rationalization of controllers with internal delays 
is presented in this paper. Delayed (or so-called anisochronic) 
controllers result from the use of compensatory or predictive control 
methods for time-delay systems. In this study - where the aim is to 
match the original infinite-dimensional controller with a simple 
finite-dimensional one - the Padé approximation of the whole transfer 
function and the methodology preserving dominant poles and zeros 
and asymptotic behavior are introduced and compared. Control of a 
circuit laboratory heating plant with delays in a special ring or proper 
and stable meromorphic functions is taken as an example for the 
comparison. The simple negative control feedback system and a 
control structure with two feedback controllers are implemented. 
Besides simulation results, real measurements on the laboratory 
appliance are presented as well. 
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I. INTRODUCTION 
N recent decades a number of papers and works have been 
focused on model reduction or rational approximation of 

time-delay systems (TDS), see e.g. [1], [2] or a fair overview 
published in [3]. Reduction ideas and approaches can 
naturally be extended from plant models to their controllers. 
An overwhelming majority of these methods, however, deals 
with input-output delays only ignoring internal or state delays 
on the left-hand side of differential equations, i.e. those 
transfer functions with exponential terms in the denominator. 
Moreover, the obtained plant model or controller structures 
would be of a very high order, as it is presented in [4] for 
some particular cases. 
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There are many control theory areas where the appropriate 
controller design leads to unordinary controller structures, 
such as in optimal control methods, compensatory ideas, 
control of high-order systems etc. For TDS, many approaches, 
especially compensatory or predictive ones, see e.g. [4]-[8], 
yield controllers with delays in the dynamics – so-called 
anisochronic controllers, which belong to the class of infinite-
dimensional controllers (systems). 

As well known, see e.g. [9], more than 95 % control loops 
in industry are equipped by proportional-integral-derivative 
(PID) controllers. In the light of this fact, many more 
sophisticated analytically derived control laws are hence 
disqualified from being used in practice. A possible way how 
to overcome this obstacle is to transform of simplify these 
controllers into the PID or any simple finite-dimensional form. 

The ring of proper and stable quasipolynomial 
meromorphic functions (RMS), utilized in this paper, is a 
representative of the method giving rise to anisochronic 
controllers. The ring was originally defined and introduced in 
[7], and revised and extended in [10]. It is very effective in 
control of TDS, especially in case of a sufficiently good plant 
model. 

Thermal or heating systems are typical examples of delayed 
systems [6], [11]. The presented comparative study is 
performed on control of a laboratory circuit heating plant in 
the RMS ring. The appliance was described in [12] and its 
detailed mathematical model was derived and introduced in 
[13]. Control design in the ring for the well known simple 
feedback loop was the aim of the paper [14]. A rather more 
complex control system with Two Feedback Controllers 
(TFC), the description of which is the matter of a section in 
this contribution, was used in [15]. Both the structures with 
corresponding derived controllers are utilized in this paper. 
These controllers are simplified and rationalized via two 
simple distinctive model reduction ideas.  The first one, 
natural and intuitive, idea rests in matching dominant (right-
most) controller zeros and poles and asymptotic behavior of 
the controller and a finite-dimensional model, say a PID one. 
The second methodology is based on the idea of the Padé 
expansion where the whole controller transfer function is 
rationalized instead of a separate delay elements, which 
enables to select the order of the resulting finite-dimensional 
model. 
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Results of rational approximations are finally verified and 
benchmarked by means of the comparison of original, 
unapproximated, control responses with those using reduced 
controllers, both, by simulations as well as real measurements 
on the laboratory appliance. They proof a high usability of the 
proposed methods, mainly the Padé-based one, especially with 
respect to the above mentioned note on using of PID 
controllers in industry. 

The paper is organized as follows. Basic ideas and 
methodology of algebraic control design in the RMS ring is 
concisely overviewed and summarized in Section II. General 
forms of anisochronic (delayed) controllers and linear finite-
dimensional, particularly PID, ones and ideas of both the 
rationalization methodologies are introduced in Section III. In 
Section IV, a brief description, a model of the laboratory 
appliance and corresponding eventual controllers for both 
control system structures are briefly introduced. 
Approximating controllers' structures and simulated control 
responses comparison and analysis is the matter of Section V. 
Finally, Section VI provides real experimental results. 

II. CONTROLLER DESIGN IN RMS – AN OVERVIEW 
Modern control theory has been adopting algebraic 

approaches and parlance, which are based on system 
description in a suitable field, ring or module and the 
subsequent operation in the algebraic structure, for decades. 
The RMS ring is a representative of this class of control design 
tools for linear time-invariant TDS. The definition of the RMS 
ring was introduced in [7] and revised and extended in [10]. 
Since the aim of this paper is to deal with these definitions, the 
reader is referred to the mentioned papers. Yet, let us 
concisely introduce and summarize controller design 
procedures in the ring for both control systems, for the simple 
feedback control structure and the TFC one. Again, for further 
details, the reader is referred e.g. to [8], [14], [15]. 

A. Control design for the simple feedback loop 
To let the reader know especially the notation of signals, 

the well known simple negative feedback loop is pictured in 
Fig. 1. Note that all the presented signals are assumed to be 
ratios of elements from RMS. 

 
 Fig. 1 Simple control feedback loop 

 
External inputs, reference and load disturbance signals, 

respectively, have forms 
 

( ) ( )
( ) ( ) ( )

( )sF
sHsD

sF
sHsW

D

D

W

W == ,  (1) 

where ( )sHW , ( )sH D , ( )sFW , ( )sFD ∈RMS. 
If a pair ( ) ( )∈sBsA , RMS is (Bézout) coprime [16], the 

closed-loop system is stable (in RMS sense) if and only if there 
exists a coprime pair ( ) ( )∈sQsP , RMS satisfying the Bézout 
identity 

 
( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (2) 

 
a particular stabilizing solution of which, ( ) ( )sQsP 00 , , can be 
further parameterized as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sZsAsQsQsZsBsPsP m00 ,0 =≠±=  (3) 
 

where ( )∈sZ RMS. 

The reference signal ( ) ( ){ }sWLtw 1−=  is asymptotically 
tracked if and only if ( )sFW  divides the product ( ) ( )sPsA  in 
RMS [17]. 

The load disturbance ( ) ( ){ }sDLtd 1−=  is asymptotically 
rejected if and only if ( )sFD  divides ( ) ( )sPsB  in RMS. 

B. Control Design for the TFC Control System 
As in the previous subsection, basic control requirements 

conditions for the TFC control loop (see Fig. 2) are provided.  
 

 
 Fig. 2 TFC control feedback loop 

 
The stability condition for the TFC structure can be 

formulated analogously to (2), yet with ( ) ( ) ( )sRsQsT +=  
instead of ( )sQ . 

Load disturbance rejection is satisfied if ( ) ( ) ( )( )sPsBsFD | ; 
however, reference tracking requires the simultaneous 
fulfillment of two conditions: ( ) ( ) ( )( )sPsAsFW |  and 

( ) ( ) ( )( )sQsBsFW | . To guarantee that, ( )sT  has to be 
decomposed to ( )sQ  and ( )sR  by putting weights to 
appropriate s-powers in numerators of both terms. These 
weighting coefficients bring additional degrees of freedom. 
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III. CONTROLLERS FORMS AND REDUCTION METHODOLOGIES 

A. Delayed Controllers 
Linear delayed (anisochronic) controllers belong to a wide 

family of infinite-dimensional systems. They are characterized 
by an infinite spectrum which results from the existence of 
delayed (exponential) terms in the transfer function. These 
delayed elements in the dynamics appear because of the 
endeavour to compensate non-approximated delays in the 
controlled model of TDS (or simply a system with input-
output delay). For instance, controllers obtained from the 
algebraic design described in Section II lead to the 
anisochronic structure which can be described via the transfer 
function as 

 

( ) ( )
( )sP
sQsGQ =  (4) 

 
where ( ) ( )sPsQ ,  are quasipolynomials of the form  
 

( ) 0,exp
0 1

≥−+ ∑∑
= =

ij

n

i

h

j
ij

i
ij

n
i

ssxs ϑϑ  (5) 

 
where the degree (i.e. the highest s-power) of the numerator is 
less or (usually) equal to that of the denominator. If 0=njx  

for all j  with 0>ijϑ , the controller is of a retarded structure; 

otherwise, it has a neutral form. 
Let us relabel the controller in Fig. 1 in accordance to (4) 

for the further text. 

B. Finite-Dimensional Controllers 
The general transfer function form of linear finite-

dimensional controllers is a basic technical knowledge; 
nevertheless, let us introduce it to be referenced below. Hence, 
consider a ratio ( ) ( ) ( )sPsQsGQ /=  with 

 

( ) ( ) ∑∑
==

+==
P

P

Q n

i

i
i

n
n

i

i
i spssPsqsQ

10

,  (6) 

 
Let us denote, in addition 

 

 ( ) ∑
=

=
Rn

i

i
i srsR

0

 (7) 

 
for the controller numerator in the TFC structure. 

Note that it holds for a standard PID controller that 
2== QP nn , 00 =p . 

The task is to match (4) and (5) with (6) (and/or (7)); hence, 
two simple ideas are described below. 

C. Zeros, Poles and Asymptotic Behavior Matching 
One can, naturally, try to preserve dominant (i.e. right-

most) controller zeros and poles and asymptotic controller 
behavior, i.e. the slope of a step response direction at infinity 
for an integral controller and/or an initial point of a step 
response for a derivative one. Hence, for the pole-matching, 
the aim is to find { }

Pnsss ,...,, 21  such that  
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 (8) 

 
and for every other is  with ( ) 0=isP  it holds that 

in ss
P

ReRe ≥ . 

Similarly, for the zero-matching, we have 
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 (9) 

 
The set { }

RRnRR zzz ,..., 21  of zeros of ( )sR  for the TFC 

structure can be defined analogously to (9). 
Asymptotic conditions can be expressed as 
 

( ) ( )
( ) ( ) ±∞≠=

=±∞==

⋅
+

→⋅
+

→

⋅→⋅→

sGssGs

kksGssGs
k

s
k

s

k
s

k
s

1
0

1
0

max00

maxmax limlim

,...1,0,limlim
 (10) 

 
for controllers with integral behavior (or for those tracking or 
rejecting harmonic signals) and 
 

( ) ( )sGsG ss ⋅∞→⋅∞→ = limlim  (11) 
 
for derivative-like controllers. The value of maxk  agrees with 
the so called order of the astatism of the controller and the 
lower index ” ⋅ ” means either R  or Q . 

D. Matching Based on the Padé Approximation 
The transfer function rationalization via the Padé 

approximation is usually performed in such a way that the 
approximation is applied to exponential terms only. This 
technique leads to high-order approximation models. A 
different approach, used here, rests in the approximation of 
the whole transfer function based on the Taylor (Maclaurin) 
series expansion of the approximated and approximating 
model and matching of some (low-degree) coefficients, which 
agrees with conditions 
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 (12) 

 
Notice that it is possible to calculate identities (12) at a 

different point from 0=s , e.g. in the neighborhood of a 
frequency where a good approximation is desired. If any of 
derivatives does not exist, substitute ( )sG⋅  by ( )sG⋅/1 , which 
is the case of controllers derived above as well. The value of 
l (usually) equals the number of approximating model 
parameters. However, in some cases, equations in (12) are not 
independent or do not include any variable; thus, l ought to be 
higher than the number of unknowns here. 

IV. CIRCUIT HEATING PLANT MODEL AND ITS CONTROLLERS 
  Let us very concisely describe the circuit heating plant 

serving as a testing controlled device. 

A. Plant Description 
A photo of the appliance is depicted in Fig. 3. 
 

  
 

Fig. 3 Circuit heating plant photo 
 
In principle, the heat transferring fluid is transported using 

a continuously controllable pump into a flow heater. Warmed 
liquid then goes through a long insulated coiled pipeline 
which causes the significant internal delay in the system. The 
air-water heat exchanger (cooler) with two cooling fans 
represents a heat-consuming appliance. The expansion tank 
compensates for the expansion effect of the water. 

B. Mathematical Model 
Since the modeling and identification of the laboratory 

plant was thoroughly derived and introduced in [13], only a 
final results used in this paper is going to be presented. 

We choose here to control cooler output temperature, 
( )tCOϑ , by means of the heater power, ( )tPH . For this 

relation, the following transfer function was derived 
 

( ) ( )
( )

( )[ ] ( )
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D

D
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ττϑ
−++++

−+−
==
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001
2

2
3

000  (13) 

 
where 000012 ,,,,, bbaaaa DD  are (non-delay part) plant 
parameters, ϑττ ,, 0  stand for plant delays (input-output and 
internal ones, respectively). It was determined that for the 
operating point 

 
[ ]

[ ]C24C,36,C8.43C,1.44,W300,V3,V5

,,,,,,

°°°°=
ACOCIHOHcp Puu ϑϑϑϑ

 (14) 

 
that the parameters in (13) are 
 

143,131,5.1,10624.7,10413.1

,009.0,1767.0,10146.2,10334.2

0
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ϑττD
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 (15) 

C. Derived Delayed Controllers 
To demonstrate the complexity of eventual controllers 

resulting from the algebraic control design in the RMS ring, 
their transfer functions are introduced. Thus, the use of the 
simple feedback loop according to Fig. 1 gives 
 

( ) ( )( )
( )( ) ( )( ) ( )sbsbmmsbb

saasasasmsG
DD

D
Q

ττ

ϑ

−+−−++

−++++
=

expexp

exp

000
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0

3
000

001
2

2
33

0  

 (16) 
 

where 00 >m  is a tunable parameter. Note that the controller 
(16) was calculated for step-wise reference and load-
disturbance signals. 

Controllers' laws for the TFC control systems are even 
more complex 
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 (17) 
  
where [ ]1,0,0, 10 ∈> γmm  are selectable parameters, for real 
coefficients 432 ,, ppp  holds that 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 7, 2013 731



 

 

( ) ( ) ( )2
004

2
0003

2
00

2
02 ,4,6 DDD bbpbbmpbbmp +=+=+=   

 (18) 
 
and quasipolynomials ( ) ( )spsp 10 ,  read 
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The complexity is partially caused by the fact that the 

controllers above were derived for a linear-wise reference. 

V. APPROXIMATING CONTROLLERS AND SIMULATION 
RESULTS 

Let us derive and benchmark finite-dimensional controllers 
obtained by methodologies introduced in Section III. PID and 
P (i.e. proportional) controllers with 2== QP nn , 00 =p , 

and 0== QP nn , respectively, are selected as "initial" 

approximating structures (according to (6), (7)). Resulting 
controllers are compared with the original ones by means of 
simulated control responses characteristics. 

A. Zeros, Poles and Asymptotic Behavior Matching 
The rightmost zeros of controller (16) with values (15) and 

012.00 =m  are 
 
{ }

{ }j10077622.31043535.6,1097619.2

,,
233

321

−−− ⋅±⋅−⋅−=

QQQ zzz
 (20) 

 
It is clear that the use of a PID controller is impossible since 

it can not have such a distribution of dominant zeros. 
Therefore, a consider a more general approximating linear 
finite-dimensional controller structure with 3== QP nn , 

00 =p . Because of 
 

{ }
{ }

( ) 10978.0lim
,j10346829.21074644.6,0

,,

0

23
321

=
⋅±⋅−=

→

−−

ssG

sss
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the approximating controller reads 

 

( ) ( )422

5223

1096275.5103493.1
10546.6102846.235256.02481.22

−−

−−

⋅+⋅+
⋅+⋅++

=
sss

ssssGQ  

 (22) 
 
However, this controller causes a very high control action, 

as can be seen in Fig. 4.  
 

 
 

 
Fig. 4 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  

(right) for the simple feedback structure with controllers (16) vs. (22) 
(and that with a reduced gain) 

 
 In the figure, where ( )tu0Δ  stands for the manipulated 

input (i.e. heater electricity input power) and ( )tyΔ  means the 
controlled output (i.e. temperature behind a heat exchanger), 

( )tw  is the reference signal and ( )td  stands for a load 
disturbance. Notice that the maximum manipulated input 
deviation is W450max,0 =Δu . Therefore, a reduced controller 

gain as ( ) ( )sGsG QQ 75.02 =  has been set eventually. 

Regarding the TFC case, robust analysis has yielded the 
settings: 4.0,005.0,02.0 10 === γmm . Controller ( )sGQ  

can be approximated by a proportional model where the 
identity ( ) ( )sGsG QsQs 00 limlim →→ =  is taken as an objective, 

hence 
 

( ) 6114.24== QQ GsG  (23) 
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Dominant poles and zeros of ( )sGR  in (17) are the following 
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 (24) 
 

which implies that a PID model can be used here as 
 

( ) 2

42 1016545.650115395.07822.98
s

sssGR

−⋅++
=  (25) 

 
where the condition ( ) ( )sGssGs RsRs

2
0

2
0 limlim →→ =  

41016545.6 −⋅=  is considered in addition. 
However, control process with controllers (23) and (25) is 

unstable (and hence not displayed here); therefore, we have 
changed controllers‘ gains to QQ GG 5.02 = , 

( ) ( )sGsG RR 5.02 =  - the corresponding control responses are 
depicted in Fig. 5. 

 

 
 

 
Fig. 5 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  

(right) for the TFC structure with controllers (17) vs. (23) and (25) 
(with a reduced gain) 

Approximating controllers derived on the basis of a 
requirement of equality of dominant controllers’ poles and 
zeros provide satisfactory control responses that are a bit 
slower then the ones obtained by the algebraic approach in the 
RMS ring, yet with reduced overshoots. Nevertheless, 
controllers’ gains had to be adjusted. 

B. Matching Based on the Padé Approximation 
Consider now the procedure based on the Padé 

approximation. For the simple control system, since 
( ) ∞→0QG , the derivatives in (12) are calculated for 

( )sGQ/1 . In addition, condition ( )[ ] ( )[ ]
0

/1/1
0 =

=
= s

sGsG QsQ  

leads to identity 00 =  directly, which implies no useful result. 
Therefore, let 4=l  rather than 3=l . The resulting controller 
reads 

 

( ) ( )2

32

1059065.3
1091172.2871844.0873.36

−

−

⋅+
⋅++−

=
ss

sssGQ  (26) 

 
As second, for TFC, controller ( )sGQ  in (17) has no pole at 

zero, hence, 1=k  and a proportional model is considered 
here. Finally, ( )sGR  owns a double zero pole and 

( )[ ] ( )[ ] 00/1/1
00 =⇒=

== s
sGsG RsR  again, therefore take 

4=l  and a PID model. 
The resulting model reduction is expresses by the eventual 

approximating controllers' transfer functions as 
 

( )

( ) 6114.24

1016545.6416887.02676.47
2

42

=

⋅++
=

−

sG
s

sssG

Q

R  (27) 

 
The corresponding simulation control responses are 

pictured in Figs. 6 and 7, for the simple feedback loop and the 
TFC structure, respectively. 

Obviously, this type of approximation provides a very good 
simulation result closely matching the original control 
responses curves without changing of controllers’ settings. Its 
disadvantage can be viewed in rather complex calculations for 
the solution of set (12). 

C. Conclusion 
Since the latter method gives much better simulation results 

for this particular example, eventual control laws do not need 
to be modified, and the P and PID structures are industrial 
standards and of a simpler form than controllers derived by 
the former method, the Padé approximation based 
methodology is chosen for real-life verification measurements. 

VI. REAL MEASUREMENTS RESULTS 
Finally, verify the usability of controllers (26) and (27) that 

has arisen from the simplification of controllers (16) and (17) 
using the Padé approximation. The corresponding comparison 
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of simulated and measured control responses are displayed in 
Figs. 8 and 9. 

 

 
 

 
Fig. 6 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  

(right) for the simple feedback structure with controllers (16) vs. (26) 
 

 
 

 
Fig. 7 Simulation control responses of ( )tu0Δ  (left) and ( )tyΔ  

(right) for the TFC structure with controllers (17) vs. (27) 
 

 
 

 
Fig. 8 Measured vs. simulated control responses of ( )tu0Δ  (left) and 

( )tyΔ  (right) for the simple feedback structure with controller (26) 
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Fig. 9 Measured vs. simulated control responses of ( )tu0Δ  (left) and 

( )tyΔ  (right) for the TFC structure with controllers (27) 
 

To avoid the abrupt change in the control action at the 
beginning of Fig. 8, we would suggest using a low-pass filter 
on the reference signal. Other undesirable effect can be seen 
near the end of the measurement where due to rapidly 
decreasing ambient temperature the control action increases 
whereas controlled temperature can not reach the reference 
value. 

Although real control responses are not as satisfactory as in 
the case of original controllers derived using the RMS ring, 
figures above prove the usability and applicability of 
simplified finite-dimensional (PID) controllers as well. 
Particularly, the reaction to the load disturbance when using 
the TFC structure is surprisingly good. 

VII. CONCLUSION 
Both the theoretical and practical aspects of two simple 

delayed model reduction and rationalization methodologies 
have been the aim of this paper. The presented approaches 
represent two possible easy-to-implement ways how to 
transform controller models with delays to the most used PID 
(or similar linear finite-dimensional) form. Namely, zero-
poles-asymptotic matching and Padé approximation based 
procedures have been introduced. Matlab-Simulink simulation 

and real-measurements result on a laboratory circuit heating 
plant with internal delays have proofed, particularly, the high 
performance of the letter idea. All the primal infinite-
dimensional controllers have been derived in the algebraic 
way using the RMS ring which also approves the usability of 
the whole complex control design methodology. 
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